matzapiski.si

PONAVLJAMO

Mnozice elementi ponavljamo za maturo matzapiski.si

ELEMENTI MNOŽICE A
Maturitetna naloga 

 

Poišči elemente množice A
 
Namig za iskanje elementov:
  • Prvi del pove, da morajo biti elementi naravna števila, torej cela pozitivna števila od 1 naprej.
  • Drugi del zavitega oklepaja podaja neenačbo. Rešimo to neenčbo in iz nje razberemo, katera naravna števila so rešitev te neenačbe in ta so tudi elementi množice A.
  • Rešitve zapišemo v zaviti oklepaj, uredimo jih po vrsti in ločimo z vejico.
  • Kakšna je torej rešitev? 
  • Ta primer je del 2. naloge v poskusni poli za maturo 2021. Vse rešene pole najdeš v knjigi Matpole, še več rešenih nalog za utrjevanje pa v knjigi Matzapiski

 Matpole kombo mockupMatzapiski mockup

  • Za rešitev te naloge klikni levo slikco in poglej spodaj :)
  • Reši še kakšno maturitetno nalogo, klikni tukaj.

 

Kotne funkcije komplementarnost ponavljamo za maturo matzapiski.si

KOTNE FUNKCIJE
Maturitetna naloga 

 

Poenostavi izraz!
 
Namig za poenostavljanje izrazov:
  • Super je, če poznamo formulce :) Potem tole na hitro rešimo z uporabo komplementarnosti.
  • Druga pot, je daljša, ampak običajno se prej spomnimo adicijskih izrekov, kar pa tudi privede do istega rezultata.
  • Kakšna je torej rešitev?
  • Ta primer je del 7. naloge v spomladanski poli 2018. Vse rešene pole najdeš v knjigi Matpole, še več rešenih nalog za utrjevanje pa v knjigi Matzapiski

 Matpole kombo mockupMatzapiski mockup

  • Za rešitev te naloge klikni levo slikco in poglej spodaj :)
  • Reši še kakšno maturitetno nalogo, klikni tukaj.

 

Geometrija piramida ponavljamo za maturo matzapiski.si

GEOMETRIJA PIRAMIDA - KOTI
Maturitetna naloga 

 

Poišči prave kote!
 
Namig za iskanje ustreznih kotov:
  • Najprej dobro preberi navodilo ali računamo kot med stranicami ali robovi!!! 
  • Osnovni rob je rob ob osnovni ploskvi, stranski rob je rob ob stranski ploskvi
  • Če računamo kot med ploskvami, nikoli ne uporabimo robov, ampak višine ploskev (pri trikotnikih) in diagonale (pri štirikotnikih).
  • Pri osnovni ploskvi gremo vedno do glavne višine, da dobimo pravokotni trikotnik.
  • To razlikovanje kotov pride prav seveda tudi pri maturitetnih nalogah. Za primer reši 7. nalogo pri jesenski poli 2017. Vse rešene pole najdeš v knjigi Matpole, še več rešenih nalog za utrjevanje pa v knjigi Matzapiski

 Matpole kombo mockupMatzapiski mockup

  • Za rešitev te naloge klikni levo slikco in poglej spodaj :)
  • Reši še kakšno maturitetno nalogo, klikni tukaj.

 

Potence poenostavi ponavljamo za maturo matzapiski.si

POTENCE
Maturitetna naloga 

 

Poenostavi dani izraz!
 
Pravila in postopki za poenostavljanje potenc:
  • Vedeti moramo, da sodi eksponenti izničijo minus v osnovi, lihi ga pa ohranijo. 
  • Poznati moramo pravila za računanje s potencami:
    • Potenca na potenco se množi.
    • Množenje potenc z istimi osnovami: osnovo prepiši, eksponente seštej.
    • Deljenje potenc z istimi osnovami: osnovo prepiši, eksponente odštej. 
  • To je maturitetna naloga. Vse rešene pole najdeš v knjigi Matpole, še več rešenih nalog za utrjevanje pa v knjigi Matzapiski

 Matpole kombo mockupMatzapiski mockup

  • Za rešitev te naloge klikni levo slikco in poglej spodaj :)
  • Reši še kakšno maturitetno nalogo, klikni tukaj.

 

Linearna funcija pravokotne premice ponavljamo za maturo matzapiski.si

PRAVOKOTNE PREMICE
Maturitetna naloga 

 

Poišči m, da bo graf funkcije pravokoten podani premici.
 
Namig za računanje m-ja:
  • Pravokotne premice imajo obraten in nasproten k1=-1/k2, zato rabimo k iz podane enačbe.
  • K pa lahko dobimo samo iz eksplicitne oblike, zato premico najprej preoblikujemo, da dobimo pravilni k.
  • Nato iz tega k-ja izračunamo k od pravokotnice.
  • Ker je podana funkcija že v eksplicitni obliki, lahko razberemo k=m-1
  • Potem dobljena k-ja samo enačimo in dobimo m.
  • Klikni na slikco in preveri postopek.

 

  • To je maturitetna naloga. Vse rešene pole najdeš v knjigi Matpole, še več rešenih nalog za utrjevanje pa v knjigi Matzapiski

 

 Matpole kombo mockupMatzapiski mockup

 

  • Za rešitev te naloge klikni levo slikco in poglej spodaj :)
  • Reši še kakšno maturitetno nalogo, klikni tukaj.

 

Logaritemska funkcija enacba2 ponavljamo za maturo matzapiski.si

LOGARITEMSKA ENAČBA
Maturitetna naloga pomlad 2014, naloga 6

 

Reši podano logaritemsko enačbo brez uporabe računala.
 
Namig za računanje enačb z logaritmi:
  • Ker je v enačbi več logaritmov, damo logaritme na eno stran, številke na drugo stran.
  • Potem upoštevamo pravilo za seštevanje logaritmov.
  • Dobimo enačbo z enim logaritmom, ki ga odpravimo z antilogaritmiranjem.
  • Nato obvezno naredimo preizkus!
  • Klikni na slikco in preveri postopek.

 

  • To je maturitetna naloga iz primera mature pomlad 2014, naloga 6. Vse rešene pole najdeš v knjigi Matpole, še več rešenih nalog za utrjevanje pa v knjigi Matzapiski

 

 Matpole kombo mockupMatzapiski mockup

 

  • Za rešitev te naloge klikni levo slikco in poglej spodaj :)
  • Reši še kakšno maturitetno nalogo, klikni tukaj.

 

Krajevni vektorji ponavljamo za maturo matzapiski.si

KRAJEVNI VEKTORJI
Maturitetna naloga pomlad 2014, naloga 5

 

Podani sta dve točki, izračunati pa moramo komponente vektorja AB.
 
Namig za računanje komponent vektorja:
  • Vsaka točka ima enake komponente kot njen krajevni vektor.
  • Vektor AB pa dobimo, da odštejemo krajevni vektor druge točke od krajevnega vektorja prve točke.
  • In to je to. Klikni na slikco in preveri postopek.

 

  • To je maturitetna naloga iz primera mature pomlad 2014, naloga 5. Vse rešene pole najdeš v knjigi Matpole, še več rešenih nalog za utrjevanje pa v knjigi Matzapiski

 

 Matpole kombo mockupMatzapiski mockup

 

  • Za rešitev te naloge klikni levo slikco in poglej spodaj :)
  • Reši še kakšno maturitetno nalogo, klikni tukaj.

 

sistemi enacb naloga maturitetna naloga matzapiski.si

SISTEMI ENAČB
Maturitetna naloga pomlad 2012, naloga 3

 

Podana je tekstna naloga iz katere sestavi dve enačbe in reši sistem enačb z dvema neznankama.
 
Namig za reševanje takih nalog:
  • Najprej določiš neznanke - to najlažje narediš, da prebereš vprašanje, v našem primeru x=cena svetilke in y=cena cepina
  • Nato sestaviš enačbi, ki jih rešiš na tri načine:
    • z nasprotnimi koeficienti (tukaj gre)
    • zamenjalni način (povsod gre)
    • primerjalni način (najbolj uporaben pri računanju presečišč grafov funkcij)
  • Nato samo še izračunaš x in y in napišeš odgovor!!!
  • To je maturitetna naloga iz primera mature pomlad 2012. Vse rešene pole najdeš v knjigi Matpole, še več rešenih nalog za utrjevanje pa v knjigi Matzapiski

 

 Matpole kombo mockupMatzapiski mockup

 

  • Za rešitev te naloge klikni levo slikco in poglej spodaj :)
  • Reši še kakšno maturitetno nalogo, klikni tukaj.

 

Izrazi maturitetna naloga matzapiski.si

POENOSTAVI DANI IZRAZ
Maturitetna naloga pomlad 2010, naloga 9

 

Naj bo n sodo število. Kakšna je vrednost podanega izraza?
 
Namig za poenostavljanje izraza:
  • Najprej lahko uredimo srednji oklepaj.
  • Nato ne spreglej, da je n sodo število. Na podlagi tega odpraviš oklepaje:
    • če je sodi eksponent, gre minus stran,
    • če je lihi eksponent minus ostane.
    • Pazi, da je 1n=1 (tudi 10=1)
  • To je maturitetna naloga iz primera mature pomlad 2010. Vse rešene pole najdeš v knjigi Matpole, še več rešenih nalog za utrjevanje pa v knjigi Matzapiski

 

 Matpole kombo mockupMatzapiski mockup

 

  • Za rešitev te naloge klikni levo slikco in poglej spodaj :)
  • Reši še kakšno maturitetno nalogo, klikni tukaj.

 

 

crte

Pridruži se nam in pridno ponavljaj 
za redno snov in maturo :)

facebook      instagram draw logo

Kotne funkcije enacba maturitetna naloga matzapiski.si

REŠI TRIGONOMETRIČNO ENAČBO
Maturitetna naloga jesen 2012

 

Reši trigonometrično enačbo.
 
Namig za reševanje trigonometričnih enačb:
  • Poznati moraš tipe trigonometričnih enačb.  
  • To je tip, kjer si pomagaš z uporabo zvez med kotnimi funkcijami, da vse prevedeš v eno kotno funkcijo (v tem primeru sinus).
  • Nato pridemo do kvadratne enačbe, zato si pomagamo z novim tipom - uporabo nove spremenljivke.
  • Ko dobimo rešitve, uporabimo še nov tip enačb - preproste enačbe.
  • Pri končnemu zapisu ne pozabi na periodo in k∈Z :)
  • To je maturitetna naloga iz primera mature jesen 2012. Vse rešene pole najdeš v knjigi Matpole, še več rešenih nalog za utrjevanje pa v knjigi Matzapiski

 

 Matpole kombo mockupMatzapiski mockup

 

  • Za rešitev te naloge klikni levo slikco in poglej spodaj :)
  • Reši še eno nalogo z logaritmi, klikni tukaj.

 

 

crte

Pridruži se nam in pridno ponavljaj 
za redno snov in maturo :)

facebook      instagram draw logo